Current Status of Solar Thermal Power in California

October 19th, 2010

SDSU Energy Discussion Group Adam Crocker, Graduate Student Prof. Fletcher Miller, Advisor San Diego State University

Overview

- Technology Overview
- Previous & Existing Solar Thermal Installations
- State Policy and Regulations
- Environmental & Technical Challenges
- Upcoming & Planned Projects
- Research and Future Projects

Parabolic Trough

- Most common
- Single Axis Tracking
- Distributed Receiver
- Relatively Lower concentrations, lower temperatures (350° C)

Linear Fresnel

- Single Axis Tracking
- Distributed Receiver
- Similar to Trough
 - Withstand higher winds
 - Flat mirrors

www.wikipedia.org

Central Tower Receiver

- Two Axis Tracking
- Central Receiver
- High concentrations, high temperatures

www.wikipedia.org

Parabolic Dish

- Two Axis Tracking
- Multiple Single-Point Receivers
- Modular, Scalable

www.stirlingenergy.com

Rankine Cycle

www.powerfromthesun.net

- Phase-Change Cycle
 - Requires condenser
- Closed Loop

Stirling Cycle

www.powerfromthesun.net

- Closed Loop
- Gas Phase
- Highest theoretical thermodynamic efficiency

Stirling Cycle Visualization

Animation of Free Piston Stirling Engine

Brayton Cycle

www.powerfromthesun.net

- Open or Closed Loop
- Gas Phase
- Highest temperatures

Previous & Existing Solar Thermal in California

- Solar One 10 MW (1982-1986)
- Solar Two 10 MW (1996-1999)
- SEGS Luz 354 MW (built 1984-1991)
- Sierra Sun Tower eSolar 5MW (2009)
- Kimberlina Linear Fresnel Areva Solar 5MW (2008)

Existing Capacity

Renewables Production

24-Hour Renewables Production

Renewable Resources	Peak Production (MW)	Daily Production (MWh)
Solar	411	4,860
Wind	1,447	25,774
Small Hydro	429	9,679
Biogas	173	4,051
Biomass	413	9,350
Geothermal	1,075	24,313
Other Renewables *	72	1,640
Total Renewables		79,667
Total 24-Hour System Demand (MWh):		654.999

Total 24-Hour System Demand (MWh):

This table gives numeric values related to the production from the various types of renewable resources for the reporting day. The total renewable production in megawatt-hours is compared to the total energy demand for the ISO system for the day.

* Other Renewables is comprised of multiple technology within one aggregated Resource ID

This graph shows the production of various types of renewable generation across the day.

www.caliso.com

- 411 MW Peak Solar Production (PV?)
- Total Electricity use peak ~15-19h

California Regulations

- SB 1078 Renewable Electricity Portfolio (2002)
 - 20% from renewable sources by 2010
 - 33% by 2020 (updated 2008)
 - Investor Owned Utilities Only
 - SCE :17% PG&E: 14.4% SDG&E: 6%
 - LA DWP: 20% SMUD: 23% (targets for 2010)
- AB 32 Emissions Reductions (2006)
 - Reduce greenhouse gas emissions to 1990 levels by 2020
- Proposition 23
 - Repeals AB 32 (until 4 quarters of 5.5% unemployment)

Environmental Challenges

- Environmental Impact
 - Land use approval
 - State California Energy Commission
 - Federal Bureau of Land Management
 - Wildlife (Desert tortoise)
- Water use
 - Dry vs. Wet Thermodynamic cycle condenser
 - Working Fluid
 - Mirror washing

Technical Challenges

- Thermal Storage
 - Shifts production to peak load times
 - Improves stability
- Plant Efficiency
- Proximity to Existing Transmission

Planned Projects

- ~400 MW Existing Capacity
- 2829 MW Approved by CA energy commission
- 1750 MW Waiting Approval
- ~4.5 Million Tons of CO₂/yr saved
- Trough, Tower, & Dish Concentrators
- Rankine and Stirling Cycles

New Construction

SDSU Combustion and Solar Energy Laboratory

UNIVERSITY

Solar Millennium

- 1000 MW Approved
- 500 & 250 MW Waiting
- Largest solar plant in the world
- Trough
- Dry-cooling
- 2010 Construction
- 2013 On-line
- 1.5 million tons of CO₂/yr saved

www.solarmillennium.de

Brightsource

- 370 MW Approved
- Central Receiver
- 550° C, 160 bar steam
- 2600 MW of power purchase agreents with PG&E and SCE, 14 plants
- Dry-cooling
- Construction begins now
- 2013 On-line
- 400 kilotons of CO₂/yr saved

www.brightsourceenergy.com

Solar Reserve

- 150 MW Waiting
- Central Receiver
- Integrated Thermal Storage
- 550° C Molten Salt
- Dry cooling
- Private land

www.solar-reserve.com

Stirling Energy Systems

- 709 MW Approved, 850 MW Waiting
- Parabolic Dish
- 25 kW each
- Hydrogen working fluid
- No Storage
- Minimal water use
- 2010 Construction
- 2011 On-line

www.stirlingenergy.com

Abengoa

- 250 MW Approved
- 370° C Steam
- 2013 On-line
- 431 kilotons of CO₂/yr saved

www.abengoasolar.com

Timeline of Plant Construction – Brightsource

- 2006 Brightsource Energy founded
- 9/2007 Filed Application for Construction w/CA (first since 1989)
- 4/2008 Power Purchase Agreement w/PG&E
- 10/2008 Contract with Siemens for Turbine
- 2/2009 PPA w/SCE
- 8/2009 CA Public Utilities Commission approves PG&E contracts
- 12/2009 Labor agreement for construction
- 2/2010 Proposed reduced footprint for environmental impact
- 2/2010 Federal loan guarantees secured
- 8/2010 CA Energy Commission recommends approval
- 8/2010 US BLM issues final environmental impact statement
- 9/2010 CA Energy Commission licenses plant
- 10/2010 US BLM approves project

Future Research and Projects Impact

- Brayton Cycle, Air-cooled receive
- Direct to steam in parabolic troughs
- Direct to salt in parabolic troughs
- Storage systems
- Costs
 - Currently \$5.00-6.50 /Watt installed
- Jobs
 - 500-1000 construction per plant
 - 50-100 operation per plant

